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The Ecological Consequences of Complex
Topology and Nested Structure in
Pollination Webs

_ Pedro Jordano, Jordi Bascompte, and [ens M. Olesen

To me the most important thing in composition is disparity . . . Anything suggestive of
symmetry is decidedly undesirable, except possibly where an approximate symmetry is
used in a detail to enhance the inequality with the general scheme.
—Alexander Calder, “A Propos of Measuringa Mobile”
The extraordinary series of mobiles created by Alexander Calder provide a vivid
illustration of how the dynamics of interconnected parts depends on the way
they are.connected or linked to each other. Calder’s mobiles are complex struc-
tures of pieces of metal connected by wires or ropes that keep the massive sculp-
tures in equilibrium while they move suspended in air (Calder and Davidson
1966). This equilibrium depends on both the number and the size of pieces and
the way they are connected—not ohly pairwise, but collectively.
In nature, networks of species interactions are the architecture of biodiversity,
because community dynamics rely deeply on the way species interact. Pollina-
tion by animals is the most common means of fertilization in higher plants, and
the mutualism involved in the process illustrates the pervasiveness of complex
networks of interaction. For example, tropical forests harbor woody floras in
which more than 80% of species rely on animal pollinators for reproduction
(Gentry 1982). Most pollination interactions are not specific and do not involve
tight mutualisms between species pairs, yet pollination interactions are paradig-
matic examples of coevolved interactions among animals and plants. Despite
evidence for highly diversified interactions, the well-known precise adjustments
between flowers and their pollinator visitors to ensure efficient pollination and
adequate handling of the floral rewards led to the prevailing notion of highly
specialized interactions. Darwin (1862) advanced a hypothesis of flower mor-
phology evolution based on a highly specialized interaction between a long-
spurred orchid and the specialized pollinator it ought to have, later found to be
a long-tongued sphingid moth. Since then, textbooks have presented pollina-
tion interactions between animals and plants as paradigmatic of mutual speciali-
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zation. However, when one considers communitywide patterns, for example, in-
cluding all the flower species and all the pollinator taxa that interact in a partic-
ular location, a wide range of generalization in the mode of interaction emerges
as a prevalent pattern. This illustrates the lasting debate about generalization
versus specialization of pollination interactions. The debate stems from the
difficulty of assessing the totality of biotic interactions within highly diversified
communities, and it leads into the difficulties of quantifying generalization at
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Figure 8.1 Bipartite graphs as representations of networks, illustrating plant-pollinator interaction net-
works. (A) Bipartite graph representation of the interactions among A = 15 poliinator taxa and P = 15
plant taxa, with k = 120 interactions. Species are nodes, or vertices, in such a graph, and the pairwise
interactions among them are represented by lines connecting two nodes of different sets. Pollinator spe-
cies A visits all 15 plants; plant species 15 is visited only by A. These bipartite networks are similar to, for
example, sociological networks representing the relationships among people attending a series of social
events (Davis et al. 1941). (B) Examples of the interaction patterns in relatively simple plant-pollinator
webs in the Acores Islands (Olesen et al. 2002) and Zackenberg, Greenland (Olesen and Elberling, un-
published data). (C) Matrix representation of bipartite data. Rows represent plant species; columns rep-
resent pollinator species, and black boxes indicate actually documented pairwise interactions. The top
left panel shows a perfectly nested matrix, where interactions of the more specialized species are a proper
subset of the more generalized interactions; the top right panel shows a matrix of random interactions;
and the bottom panel shows the actual dataset of Zackenberg, Greenland, in matrix form. The curved
line shows the isocline of perfect nestedness; that is, all interactions (black boxes) would lie to the left of
the isocline if the matrix were perfectly nested (see Bascompte et al. 2003).

the community level (Waser et al. 1996; Johnson and Steiner 2000; Olesen
2000). As stated by Thompson (1994), we need more than the analysis of pair-
wise interactions to understand the evolution of diversified mutualisms such as
animal-mediated pollination.

Pairs of pollinator and plant species do not interact in an ecological vacuum,
and the outcome of their interaction is best viewed within the network of
community-level interactions. For instance, the possibility for a rare species to
persist might depend on its ability to develop specialized interactions with a spe-
cialist pollinator or on the sharing of pollination services from generalists (Mem-
mott and Waser 2002). The robustness of a network of interactions (i.e., the
ability of the component species to persist given the extinction of a partner) may
depend on the pattern of shared interactions, not uniquely on pairwise inter-
action with the extinct species. These issues, among others, require understand-
ing of the web of plant-pollinator interactions.

The study of complex networks has flourished in recent years (Strogatz 2001;
Albert and Barabdsi 2002), and general patterns are starting to emerge which
point to interesting properties shared by many types of networks. Recent find-
ings reveal consistent patterns in structure, irrespective of the type of network,
for example, similarities between abiotic and biotic networks (Newman 2003).
These networks share a fundamental structure or architecture of nodes (ele-
ments or parts) linked by connections (fig. 8.1). The frequency distribution of
the number of links per node has generally been reported to decay as power-law
(scale-free), broad-scale (i.e., truncated power-law), or faster-decaying functions
(i.e., exponential; Amaral et al. 2000; Strogatz 2001). Power-law distributions
of connectivity are charaterized by a high frequency of nodes with few con-
nections and a few highly connected nodes. These generalized patterns have im-
plications for the evolution, stability, and resilience to perturbations of these
networks (Barabdsi and Albert 1999; Albert and Barabasi 2002; Dorogovtsev and
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Mendes 2002). For example, exponential functions describe randomly assem-
bled networks, whereas power-law distributions result from predictable build-
up processes (Barabdsi and Albert 1999). Thus, the comparative statistical anal-
ysis of complex networks sheds lights on their dynamics. Similar patterns have
been documented in the ecological literature in recent years, yet few data are
available that provide sufficient resolution (Williams and Martinez 2000; Dunne
et al. 2002; Montoya and Solé 2002). We have only a limited sample of the com-
plex and diversified patterns of interaction among species in natural ecosystems
because most of the previous work on ecological networks focused on food webs
and predator-prey interactions. Mutualistic, parasite-host, facilitation, and
commensalism interactions are best represented by bipartite graphs of species
interactions (Jordano 1987; Poulin 1996; Poulin and Guegan 2000; Jordano
et al. 2003) and share both topological (connectivity) and structural patterns
(Bascompte et al. 2003) with great potential for influencing species coevolution.

Considering plant-pollinator interactions at the community level is impor-
tant for several reasons. First, the evolution of pollination adaptations in floral
traits most likely results from community-level processes that involve the inter-
action of groups of species, and not exclusively from the sum of pairwise inter-
actions between plant and animal species. Second, the evolutionary robustness
of plant-pollinator interactions depends on properties best viewed at the com-
munity level, such as the resilience after extinctions of taxa or the resistance to
invasions by exotic species. Third, the manner in which multispecies inter-
actions are organized probably influences the possibilities of rare species for per-
sistence (i.e., how they get reliable pollination services or floral rewards from
other taxa). It is only by considering quantitative techniques for complex net-
works analysis—by characterizing the interactions among species (nodes or ver-
tices) in animal and plant communities—that we can address the potential for
variations in network topology to influénce coevolutionary processes in high-
diversity mutualistic webs.

In this chapter, we review recent advances in the analysis of complex inter-
action networks and apply them to the study of plant-pollinator interactions. In
addition, we explore future avenues of research such as robustness to the loss of
species. Taken together, these findings point to very general patterns of general-
ization-specialization gradients that rest on shared topological and structural
properties of how interactions among complex species assemblages are built.

Definitions and Methods

Plant-pollinator records are typical two-mode data (Borgatti and Everett 1997),
where the relations between two sets of entities (here, the sets of plant and pol-
linator species) are described (fig. 8.1A). Most, if not all, of the included inter-
actions can be considered mutualistic interactions, where both animal and plant
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partners obtain a benefit; of course, a gradient of types of effects exists (Thomp-
son 1982) in such a diverse array of interactions, ranging from completely
beneficial to almost antagonistic (see also Renner, chap. 6 in this volume). A
community-level analysis of mutualism-driven coevolution has to account for
the full range of interactions and their outcomes.

Entities contain nodes or vertices, which in our case are interacting species;
vertices are also called actors in the sociological literature (Newman 2003). Lines
that connect two vertices are called edges or links. In the ecological literature,
nodes are species and links are interactions among them. The degree of a node is
the number of edges connected toit (i.e., the number of interactions per species).
Thelinks in these networks only run between nodes of the different sets. A plant-
pollinator interaction network is thus defined by an adjacency matrix R which
describes the reproductive and trophic interactions between communities of P
plant species and A plant-visiting animal species within a well-defined habitat
(Jordano et al. 2003):

R= [aii AxP?

where a; = 0 if there is no interaction observed between speciesiand j, ora, = 1
if an interaction has actually been recorded (figs. 8.1A, 8.1C, 8.2).

Thus, this matrix has k nonzero elements (a,) wherever plants are pollinated
by flower-visiting animals that harvest pollen or nectar. The matrix R would
have A + Pnodes or vertices (species) and k links among them (figs. 8.14, 8.1C).
These typically are sparse matrices (Duff et al. 1986; Boisvert et al. 1997); that is,
matrices with a significant number of zero elements (fig. 8.2). The matrix of
interactions captures the essence of interaction patterns at the species level
within a given community. Whenever two species are recorded as interacting,
the elements a, = 1 when only the qualitative interaction is recorded. If quanti-
tative information is available (e.g., frequency of visitation), for elements with
a; # 0, we have some estimate of reliance of the pollinator on the plant (e.g.,
fraction of the pollinator’s visits to the plant species relative to the total number
of visits) or reliance of the plant on the pollinator (e.g., fraction of visits by the
pollinator relative to the total visits by all pollinators or fruit set level resulting
from pollinator visitation; Jordano 1987; see also Laska and Wootton 1998;
Vizquez and Aizen, chap. 9 in this volume). In this case, the matrix would be
valued and, in the case of a bipartite graph representation, would have two val-
ues, one describing the dependence or strength of the plant on the pollinator
and another one for the pollinator on the plant (see Jordano 1987; Dicks et al.
2002; Vazquez and Aizen, chap. 9 in this volume). Such networks can evolve
over time, with links among plants and pollinators appearing and disappearing
according to phenological variation or even changing in their strength values.
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Here we examine total networks, generally compiled during the whole repro-
ductive season and thus including a reasonably complete representation of the
interactions. Compared to data available for food webs (Goldwasser and Rough-
garden 1997; Bersier et al. 1999; Pimm 2002), these bipartite webs have very
high resolution—down to the species level. However, potential biases intro-
duced by variation in sampling effort have been discussed in detail by Jordano
(1987), Olesen and Jordano (2002), and Vazquez and Aizen (2003; chap. 9 in
this volume).

We use additional variables to characterize the interaction matrices and asso-
ciated graphs. First, we analyze topological patterns defined by the way inter-
actions are distributed among species—the so-called connectivity distribution
(i.e., the probability density function of the number of interactions per species;
Jordano et al. 2003). Second, we study structural patterns in the networks,
mainly their nested structure and the presence of different compartments (i.e.,
whether the identity of interacting species is randomly established or defines a
nonrandom, well-defined, subset; see Bascompte et al. 2003). Thus, our first ap-
proach aims to establish the number of interactions per species, and our second
approach to determine the identity of each species’ partners. Extending the lat-
ter, we also examine where the most-connected species are in the network and
how they are connected with other generalists.

In general, multivariate methods have previously been used to represent
sparse matrices such that the distances between rows and columns (vertices of
the graphs) are meaningful in describing the pattern of presence/absence of
interactions in the original matrix. The approach is to compute the geodesic
distances between all pairs of nodes in the matrix and to subject the resulting
distance matrix to ordination techniques. We used multidimensional scaling
(MDS) to represent the pattern of relations among the species in the matrices,
such that groupings that depend on the pattern of interactions can be visualized;
however, we used the MINLEN modification routine to improve visualization
(Borgatti and Everett 1997). We used both PAJEK (Batagelj and Mrvar 2003) and
UCINET (Borgatti et al. 1999) packages to analyze the plant-pollinator network
datasets; the main variables used were the following.

Density

Density involves the count of the number of links present. This is usually nor-
malized by dividing by the maximum possible number of links, which for our bi-
partite graphs amounts to A X P. This variable is frequently called connectivity
or connectance of the network (see also Petanidou and Potts, chap. 10in this vol-
ume; Medan et al., chap. 11 in this volume). Large sparse matrices illustrating
plant-pollinator interactions usually have low density (i.e., only a small fraction
of all possible interactions is actually recorded), even in intensively and ade-
quately sampled studies.
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Centrality and Connectivity Distribution

Centrality and connectivity distribution are used to measure different aspects of
how a given network is centered on particular nodes—whether “central” nodes
exist to which others are connected. Generalist species represent nodes of plant-
pollinator networks with high centrality; they exhibit many interactions, both
with other generalists (nodes which also have high k values) and with specialists
(nodes with low k values), thus resulting in high centrality. Here we focus on two
measures of centrality. First, the degree centrality of a node is the number of
edges incident on (connected to) that node; thus, the degree of a pollinator is the
number of plant species it pollinates. In the case of bipartite graphs, the maxi-
mum degree of a node is the number of nodes in the opposite set; therefore,
degrees are normalized and we used the two-mode normalization proposed by
Borgatti and Everett (1997). Second, the eigenvector centrality of a node is its as-
sociated eigenvector of the interaction matrix describing the network; it can be
considered a weighted degree measure in which the centrality of a node is pro-
portional to the sum of the centralities of the nodes it is connected to. Thus, a
species with higher eigenvector centrality will be a generalist interacting with
other generalists, located at a more central position of the network, if compared
with more specialized species. We sort out the central species in a given network
by examining the largest eigenvector centralities in a way similar to how we ex-
amine the largest eigenvalues of a multivariate dataset to sort out the main vari-
ables influencing covariation.

In a previous paper (Jordano et al. 2003), we examined the cumulative distri-
butions P(k) of the number of interactions per species, k,, by fitting three differ-
ent models: (1) exponential, P(k) ~ exp(—vk); (2) power law, P(k) ~ k"; and
(3) truncated power law, P(k) ~ k-Yexp(—k/k,), where v is the fitted constant (de-
gree exponent) and k, is the truncation value (see fig. 8.3B). The variable k, is a
critical number of interactions/species beyond which P(k) decays faster than ex-
pected from a power-law function; k, can be visualized (fig. 8.3B) as the k value in
the abscissa beyond which P(k) departs from the straight-line fit to the power law.
In general, the cumulative distributions of connectivity, or degree distributions,
reveal interesting patterns of the way networks are built. Random networks have
characteristically exponential degree distributions; they are single-scale distri-
butions because the distribution of links per node can be fully characterized by a
single value, or scale: the mean number of links/node. Complex networks devi-
ate markedly from this pattern and show link distributions that fit either power-
law or truncated power-law models. These distributions are not fully described
by a characteristic scale and are called scale-free and broad-scale distributions, re-
spectively. They are more heterogeneous than random networks, because the cu-
mulative distributions of k, have longer tails. Thus, despite the fact that the bulk
of species has few interactions in these networks, a few species have many more

interactions than randomly expected. We found the best fit to different models
\
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Figure 8.3 (A) Relationship between the mean number of interactions per species, <k>, and the total
number of species (species richness, S) in plant-pollinator networks (table 8.1). Data are presented for
tropical (e), arctic (+), alpine (), Mediterranean (x), and temperate (Q) communities. The line is the
least-squares fit to the log-transformed data. (8) Cumulative distributions of the number of interactions
per species, or degree, k,, for the ABIS and KAT1 networks (see table 8.1). The distributions of interactions
are given separately for the pollinator and plant sets of species (left and right panels, respectively). Plots
show the decay in the probability P(k) of finding a species with k interactions as k increases. The observed
data are plotted as dots, then the fits of the distribution to a power-law or truncated power-law model
are represented by continuous or dashed lines, respectively. The best fit for the analyzed networks is given
in table 8.1 (see also Jordano et al. 2003). Typically, the distributions of P(k) depart from the straight-line
fit to the power law beyond a certain value of k, (k, < k), so that there is a “truncation” at large values of k.




(Jordano et al. 2003) by examining the F values and associated adjusted R?
values.

We also examine three additional structural properties of the plant-pollina-
tor networks, namely, centralization, k-cores or cliques, and nestedness.

Centralization

The preceding variable of centrality characterizes the location of individual
nodes or species, whereas the measure of centralization (Everett and Borgatti
1999) gives the extent to which a network has a highly central node or species
around which peripheral species collect. A network with a high centralization
value would resemble a star (e.g., a community with a single pollinator species
interacting with all the plant species). '

k-Cores

There are many ways to identify the internal heterogeneity of the network (i.e.,
the extent to which groups of nodes exist that share more links among them-
selves than with the remaining nodes). In the ecological and sociological litera-
ture, these have been called cliques (Pimm 2002) or cores (Everett and Borgatti
1999); k-cores are subsets of nodes with at least k interactions among them.
Larger k-cores identify larger components of the network—groups of species
that show a maximum number of interactions among them in comparison with
other species. We used the k-cores routines in PAJEK and UCINET to identify
subgroups of taxa in the plant-pollinator networks.

Nestedness

Imagine that we sort the interaction matrix from the most generalist pollinator
species to the most specialist (i.e., matrix sorting by row); then we sort by column
from the most generalist to the most specialized plant species (fig. 8.1C). The dis-
tribution of interactions among species yields nested patterns whenever species
with fewer interactions appear to be “included” within those with more gener-
alized interactions (fig. 8.1C); that is, the interactions of the more specialized
species tend to be a proper subset of (i.e., nested within) the interactions already
observed among the more generalized species.

To measure nestedness, one needs a quantitative measure and a benchmark
to compare an observed value to check for significance. A quantitative measure
was provided by Atmar and Patterson (1993). Their nestedness calculator pro-
vides a measure of disorder understood as a physical measure of “temperature.”
When temperature is zero, the system is totally ordered; in this case, species
would be organized in the matrix to achieve maximum nestedness. In a situation
of perfect nestedness, one could draw an isocline that separates the matrix into
two parts. In the left-hand side of the matrix, all pairs of species would interact;
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on the right-hand side of the matrix, no interactions at all would occur (see fig.
8.1C). Now imagine that temperature (or randomness) increases. Random noise
would move some interaction away and we would depart from the perfect nested
scenario to arandom one in which all interactions are randomly distributed. The
nested calculator measures the global distance to the situation of perfect nested-
ness: it works by calculating the distance of all the unexpected presences and
absences to the isocline of perfect nestedness, and it averages this value. Bas-
compte et al. (2003) use a value of nestedness which is the inverse of the temper-
ature T. Because temperature ranges from zero to one hundred, nestedness can
be defined as N = (100 — T')/100; thus, nestedness ranges between zero and one
(table 8.1). Nested patterns typically yield a core of species acting as a pivot clus-
ter for other peripheral species (fig. 8.1C).

We used the FACTIONS and GENFAC2 routines in the UCINET package to
identify the central and peripheral groups of species according to the distribu-
tions of interactions. Species with high eigenvector centrality are generally
included in the core cluster of the network (Borgatti et al. 1999).

The Complexity of Plant-Pollinator Interaction Networks

Network Topologies

Plant-pollinator networks typically have sparse matrices, which best describe
their topology (i.e., the way interactions occur among species; fig. 8.2). Thus,
most interactions are simply not observed and only a fraction of the maximum
possible number actually occurs. The connectance varies widely among net-
works and is strongly and negatively associated to species richness (see table 8.1;
Olesen and Jordano 2002). Interactions rarify with increasing species richness
and connectance decreases despite the fact that, when comparing networks, the
number of interactions increases with the number of species (Jordano 1987; Ole-
sen and Jordano 2002; Bascompte et al. 2003). Supergeneralists are hard to find;
therefore, the probability of encountering a species with k interactions drops as
kincreases. The mean number of interactions per species increases with increas-
ing species richness across networks (<k> = —0.08 + 0.139S; for the log-
transformed data, F, ,, = 7.86, P = .009), but the rate of increase is relatively low
and even levels off beyond 150 species (fig. 8.3A). This may suggest a bound on
the number of potential interactions a species can develop and may ultimately
explain the decrease in connectance with S (see Pimm 2002 for discussion).

But supergeneralists (species with very large k) do exist; this differs from ran-
domly built networks, where nodes with large k values simply do not exist (Al-
bert and Barabdsi 2002; Vazquez and Aizen 2003). What biotic networks have
that is special in contrast to other complex networks is that the frequency of
these supernodes, with an extremely large number of connections, is lower than
expected if the network has a scale-free distribution of k values. Thus, the proba-

Ecological Consequences of Complex Topology and Nested Structure in Pollination Webs * 183



Table 8.1 Summary statistics of plant-pollinator interaction networks

No. Code § A P M k <k> <k KkpoA  <k> Kool Yeotinators It Yot Fit*
1 ABIS 142 118 24 2832 242 170 205 10 10.08 28 -1.35 a -0.89 b
2 ACOR 22 12 10 120 30 136 250 6 3.00 8 -1.02 b -1.26 ¢
3 CEP1 61 25 36 900 81 133 3.24 34 225 25 -1.01 a ~097 b
4 CEP2 185 101 84 8484 361 195 3.57 15 4.30 7 -0.93 a -1.24 b
5 CEP3 107 64 43 2752 196 1.83 3.06 16 456 14 -1.13 b -092 b
6 DONA 205 179 26 4654 412 201 230 17 1585 86 -1.33 a -0.68 b
7 GALA 32 2 10 220 27 084 1.23 4 2.70 6 -1.76 b -083 b
8 GARA 84 55 29 1595 145 173 264 16 5.00 24 -1.14 a -076 a
9 HES1 50 40 10 400 79 158 1.98 7 790 17 -1.45 b -0.78 b
10 HES2 50 42 8 336 72 144 171 5 9.00 17 -1.51 d -0.83 ¢
11 HES3 108 82 26 2132 249 231 3.04 19 9.58 31 -1.10 b -092 b
12 HOCK 110 81 29 2349 179 163 221 10 617 40 -1.46 b -074 a
13 INOT 952 840 112 94,080 1876 1.97 223 37 1675 119 ~136 - b -0.62 b
14 INO2 117 81 36 2916 253 216 3.2 21 703 25 -1.08 a -047 b
15 KAKU 428 314 113 35482 774 1.81 246 26 6.85 68 -1.25 a -085 b
16 KAT1 770 679 91 61,789 1193 1.55 1.76 25 13.11 188 -1.62 a ~0.62 a
17 KAT2 446 356 90 32,040 865 1.94 243 24 9.61 65 -1.26 a -079 b
18 KATO 251 187 64 11968 430 171 230 17 672 40 -1.36 a -077 b
19 KEVA 111 91 20 1820 190 171 209 7 9.50 60 -1.39 b -0.58 b
20 MAUR 27 13 14 182 52 193 4.00 12 3.71 8 -0.89 b -1.23 b
21 MOSQ 29 18 1 198 38 131 2m 7 3.45 9 -1.22 a -0.90 b
22 PERC 97 36 61 2196 178 1.84 494 31 292 13 -1.00 b -1.10 b
23 PETA 797 666 131 87,246 2933 3.68 440 104 2239 124 -0.99 a -0.89 b
24 PR 78 60 18 1080 120 1.54 2.00 9 6.67 12 —-1.44 b -089 b
25 PRI2 180 139 41 5699 374 2.08 269 16 9.12 43 -1.22 b -073 b
26 PR3 167 118 49 5782 346 207 293 26 7.06 43 -1.1 a -1.00 ¢
27 RAMI 93 46 47 2162 151 1.62 3.28 17 3.21 10 -1.01 a -1.24 ¢
28 SCHE 40 33 7 231 65 1.63 1.97 6 9.29 23 -1.33 b -052 a
29 ZACK 107 76 31 2356 456 4.26 6.00 20 14.71 32 -0.89 < -1.36 b

bility of finding a species with k interactions drops suddenly for a relatively large
value of k (fig. 8.3B; see also fig. 2 of Jordano et al. 2003). In fact, the upper limit
for k (k_,,; table 8.1) is much lower for pollinator species than for plant species,
although this might relate to the fact that plant-pollinator records are typically
obtained with “phytocentric” surveys (i.e., surveys focused on plant species and
documenting their interactions with pollinators). Although the plant-pollinator
networks examined thus far are reasonably robust to sampling artifacts (Jordano
1987; Vdzquezand Aizen, chap. 9 in this volume), future research should explore
potential biases derived from sampling designs focused on particular sets of
these bipartite networks. In addition, caution should be taken in the interpreta-
tion of results because of variable completeness of the data (Olesen and Jordano
2002; see Goldwasser and Roughgarden 1997; D. Vdzquez, personal communi-
cation) and assumptions inherent to the analyses (Vdzquez and Aizen, chap. 9in
this volume).

The distribution of number of interactions per species is markedly skewed in
pollination networks (table 8.1). Most species have k, or k, values greater than 5;
these networks share a general pattern of a dense core of species which interact
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Table 8.1 (continued)

No. Eigenvector  Centralization C N p Locality Source®

1 4.01 20.35 0.0854 0.8602 * Latnjajaure, Abisko, Elberling and Olesen 1999
Sweden

2 26.01 48.68 0.2500 0.6707 ns¢ Flores, Agores Islands §. M. Olesen, unpublished

data

3 14.25 9.86 0.0900 0.9604 ** Corddn del Cepo, Chile Arroyo et al. 1982

4 6.90 27.67 0.0425 09098 ** Cordén del Cepo, Chile Arroyo et al. 1982

5 9.95 19.02 0.0712  0.9250 ** Cordén det Cepo, Chile Arroyo et al. 1982

6 6.84 50.38 0.0885 0.9114 ** Dofiana National Park, Herrera 1988
Spain

7 15.92 12.79 0.1227 0.7016 ns Galapagos Islands McMullen 1993

8 5.49 30.72 0.090% 0.9523 ** Garajonay, Gomera Island, Olesen MS/laurisilva
Spain

9 7.57 43.52 01975 0.6279 ns Hestehaven, Denmark Olesen MS/bog

10 7.60 29.08 0.2143 0.5938 ns Hestehaven, Denmark Olesen MS/forest

1 5.08 24,42 0.1168  0.8283  ** Hestehaven, Denmark Olesen MS/fallow

12 4.62 40.96 0.0762 09454 * Hazen Camp, United States ~ Hocking 1968

13 0.49 0.55 0.0199 — Kibune, Kyoto, Japan Inoue et al. 1990

14 9.29 20.46 0.0868  0.9041 * Snowy Mountains, Inouye and Pyke 1988
Australia

15 2.04 231 0.0218 - Kyoto City, Japan Kakutani et al. 1990

16 0.62 38.12 0.0193 — Ashu, Kyoto, japan Kato et al. 1990

17 2,02 19.97 0.0270 09746 ** Mt. Kushigata, japan Kato et al. 1993

18 2.79 21.88 0.0359  0.9551 b Nakaikemi, japan Kato and Miura 1996

19 9.82 65.25 0.1044 0.9550 e Hazen Camp, Canada Kevan 1970

20 11.77 28.45 0.2857  0.8743 ™ Mauritius island Eskildsen et al., unpublished

data

21 6.29 18.08 0.1919 0.7808 ns Melville Island, Canada Mosquin and Martin 1967

22 10.38 36.01 0.0810  0.9254  ** Jamaica Percival 1974

23 3.1 14.69 0.0336 — Daphni, Athens, Greece Petanidou 1991

24 5.85 23.55 01111 0.9397 bl Arthur’s Pass, New Zealand Primack 1983, AP

25 3.53 30.79 0.0656 09252 ** Cass, New Zealand Primack 1983, Cass

26 7.56 35.30 0.0598  0.7363 ** Craigieburn, New Zealand Primack 1983, Craigieb.

27 8.61 25.17 0.0698  0.8710 * Canaima National Park, Ramirez 1989

) Venezuela

28 8.98 50.04 0.2814 0.8668 * Brownfield, Illinois, United Schemske et al. 1978
States

29 537 9.66 0.1935 0.7420  ** Zackenberg, Greenland Elberling and Olesen MS

Source: See Olesen and Jordano 2002; Jordano et al. 2003; and Bascompte et al. 2003 for details.

Note: Column headings are as follows: (S) species richness; (A) number of pollinator species; (P) number of plant species; (M) matrix size (total
number of potential interactions); (k) number of interactions recorded; (<k>) mean number of interactions per species (degree); (<k,>) mean
number of interactions per pollinator species; (k.,A) degree of most-connected pollinator species; (<k,>) mean number of interactions per
plant species; (k..,,P) degree of most-connected plant Species; (Yoo} gamma exponent for the fit of the cumulative frequency distribution
of P(K) for pollinator species; (vp,,,) gamma exponent for the fit of the cumulative frequency distribution of P(k) for plant species; (Fit) best
fit of the cumulative frequency distribution of P(k) to a model; (Eigenvector) mean eigenvector centrality of the species {plants and poliina-
tors pooled); (Centralization) network centrality value; (C) connectance, or density of the network; (N) nestedness.

=power law (a); truncated power law (b); exponential (c); not available (d). Best fit determined by the highest Fand adjusted-R? values.

bFor reference list, see Bascompte et al. 2003 and Jordano et al. 2003.

“No significance.

*p < .05; **p <.01




with each other, surrounded by many species with few interactions, connected
with those in the core (fig. 8.2). We found a number of networks that fit power-
law distributions of k values (table 8.1; e.g., KAT1 in fig. 8.3B), but most were
better described by a truncated power law (Jordano et al. 2003). In a truncated
power-law distribution, the probability of a given value of k for a species drops
with increasing k following a power-law function; then, beyond a certain value
of k,, the observed data depart from the power law and show a steep decay (ABIS
network in fig. 8.3B; Amaral et al. 2000).

Therefore, from the perspective of connectivity distribution, plant-pollina-
tor networks share many features irrespective of the ecological setting. These
features are also shared with other plant-animal mutualisms (Jordano et al.
2003) and other complex networks (Newman 2003) and probably reveal very
basic processes of the way species are arranged in mutualistic assemblages. Irre-
spective of the size of the network, plant-pollinator mutualisms center around a
core of generalist species with a high density of interactions. The interactions of
the core involve not only other generalists but also the more specialist species,
and this pattern gives the characteristic aspect to the sparse matrices that de-
scribe these interactions (fig. 8.2). The pattern depends not only on the distribu-
tion of k values among individual species but also on “structural” patterns that
define the distribution of interactions throughout the network, as described
next.

Biological Patterns: Beyond the Topology of Interactions
The truncated distributions of P(k) are not exclusive to pollination networks but
occur whenever constraints are imposed in the way nodes establish links. In the
presence of constraints, highly connected nodes would be less likely to occur
than the frequency expected for a scale-free network (Mossa et al. 2002). The
ubiquity of truncation in the distribution of the number of interactions per spe-
cies in plant-pollinator and plant-disperser mutualisms led us to suggest (Jor-
dano et al. 2003) that biological constraints are the main factor explaining trun-
cation. Constraints occur because of the biological attributes of the species; if
a plant and a pollinator differ in phenology (e.g., an early blooming herb and a
late-summer migratory pollinator), their interaction cannot occur (see also
Medan et al., chap. 11 in this volurné). This translates into “structural” zeros in
the interaction matrices, that is, pairwise interactions that will never be recorded
despite intensive study. We can thus expect a sizeable fraction of the noneb-
served interactions to be caused by these types of constraints. We defined these
nonobservable interactions as “forbidden interactions” and hypothesized that
they are the main cause of the patterns we observe in the distributions of P(k) in
plant-animal interaction networks in general.

What is the reason behind truncation of the cumulative degree distributions?
We recently provided evidence for generalized truncation in plant-animal mu-
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tualistic networks (Jordano et al. 2003) and argued that, whenever a complex
network evolves (i.e., by the addition of species), the new species are constrained
in the way they set up interaction with partners. Species-specific traits set limits
to the possibilities of successful interaction. This is readily evident from the
sparse matrices that typically describe plant-pollinator networks (fig. 8.2): ac-
tual interactions are relatively “rare.” Moreover, the number of interactions ob-
served increases with species richness, but at a relatively low rate that results in
alow fraction of the possible interactions realized at high species-richness values
(fig. 8.3A). Therefore, forbidden interactions are a major component of the
sparse interaction matrices (fig. 8.4).

The example of the Snow and Snow (1972) dataset (fig 8.4) exemplifies the
ubiquity of forbidden interactions. These authors studied interactions between
hummingbirds and plants in Arima Valley, Trinidad (10°40’ N), for almost two
years. Connectance is relatively high (C = 0.354), which is typical of subnet-
works that only include a subset of the pollinator fauna (Jordano 1987). How-
ever, there are only 185 interactions out of 522 possible, with 337 not recorded;
figure 8.4 outlines the reasons for not observing these 337 pairwise interactions.
In most cases (29%), habitat uncoupling between the plant species and the pol-
linator causes the interaction not to occur (matrix elements marked Hin fig. 8.4).
This chiefly occurs between subcanopy foragers like the hermit hummingbird
species (Phaethornis spp. and Glaucis hirsuta) and canopy trees, and among An-
thracothorax nigricollis and Florisuga mellivora, which avoid lower strata (Snow
and Snow 1972). A relatively small fraction (13%) of forbidden interactions is
due to uncoupling of corolla or flower characteristics (tube length, reward, or
color) and pollinator (fig. 8.4). Thus, 6% of the interactions are not observed be-
cause of size restrictions (i.e., beak is too short relative to the corolla tube length),
4% can be attributed to the reward per flower being too small relative to the size
of the bird; and 3% can be attributed to apparent color restrictions (e.g., Phae-

thornis guy and G. hirsuta only forage on red-flowered species).

Obviously, a sizeable fraction of the unrecorded interactions cannot be ac-
counted for and might be related to unknown factors (U, 24%; fig. 8.4) which,
among others, include chance effects and limited sampling effort. In fact, for the
figure 8.4 dataset, interactions recorded only once were excluded in the original
table; this might explain the relatively high frequency of U values. These un-
knowns are also found in other well-studied systems (Jordano et al. 2003; P. jor-
dano, unpublished data). They may simply result from an extremely low proba-
bility that the interaction actually occurs in nature despite an obvious cause. For
instance, when two species are very rare, their probability of interaction is likely
to be low. We believe that future explorations of the cause of forbidden inter-
actions will shed light on important factors in the evolution of complex patterns
of interaction in species-rich systems. A categorization of forbidden “types” may
indicate repeated patterns that are independent of the ecological setting and
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Hummingbird species
1. Saurottia tobaci

7. Chrysolampis mosquitus

4. Amazilia chionopectus

8. Anthracothorax nigricollis

9. Florisuga mellivora

2. Phaethomis longuemareus 5. Phaethornis guy

3. Chlorestes notatus

6. Glaucis hirsuta




Figure 8.4 Patterns of forbidden interactions in a plant-hummingbird subnetwork (Snow and Snow
1972). Rows indicate hummingbird species (A = 9) and columns are their foodplants (P = 58). Forbid-
den interactions are those never observed in interaction matrices; that is, for each zero element of the
interaction matrix, we note the potential cause for not having recorded that particular pairwise inter-
action. Black cells are the observed interactions in the matrix (a; = 1). For the nonobserved interactions
(g; = 0), letters indicate the potential cause for not encountering that interaction: size restrictions (S);
habitat restrictions (H), due to habitat uncoupling of birds and plants; reward limitation (R); flower color
restrictions (C); and unknown reason (U; see text for detailed descriptions). There are general reasons for
the actual interaction between a pair of plant and pollinator species being impossible to record in a given
habitat, for instance, when the flowering period of the plant does not match the period of presence of
the pollinator in the area, as in the case of migratory pollinators, or when the size of the pollinator mouth-
parts restricts access to the nectar and pollen.

may help to explain the invariant properties we document. It may also be pos-
sible to tease apart the relative importance of phylogenetic composition of the
interaction partners and their ecological traits in causing forbidden interactions.
In any case, forbidden interactions illustrate the types of constraints that are pe-
culiar to these biotic interactions and that cause network patterns that severely
deviate from other complex networks, especially the abiotic networks.

In the preceding section, we argued that the distribution of interactions
among species indicates the presence of a central core of taxa showing the high-
est density of interactions. The centrality parameters, such as the eigenvector
centrality (table 8.1), quantify to what extent a particular species has a central
role in the network, that is, located as a central actor relative to others that link
with it. The mean eigenvector centrality is negatively correlated across networks
with species richness (r = —0.581, P = .0009, N = 29), meaning that increasingly
diverse communities have a lower number of central species. Relatively simple
communities have higher connectance, which means each species in one set is
connected with a relatively large fraction of the species in the other set. This also

'means that simple plant-pollinator networks tend to be less centralized (fig. 8.5)
and to be structured as a single core with no central actor. In most cases, however
(fig. 8.5), a number of species can be identified as having the highest density of
interactions. CEP3 has 16 species (10 plants, 6 pollinators) with eigenvector cen-
trality greater than 20.0 (fig. 8.5; see table 8.1); among these, 9 species define a
central core as identified by clustering algorithms in UCINET. This algorithm
takes the bipartite graph and uses a combinatorial procedure to assign nodes to
two clusters, one central and the other peripheral, such that it maximizes the fit
to the expected situation where the density of links within each group is maxi-
mal and nonexistent between groups (Borgatti and Everett 1997, 1999). Thus,
the algorithm finds the two groups of nodes that maximize the separation be-
tween a core and a periphery within the network. In larger networks, such as
ZACKand PETA (table 8.1; fig. 8.5), a relatively small fraction of species forms the
core. In ZACK, there are 20 species out of 107 with an eigenvector centrality
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Figure 8.5 Examples of plant-pollinator networks with the core of species outlined, as identified by the
eigenvector centrality value (two-mode normalized) of each node. Species with eigenvector centrality
greater than 10.0 (PETA network) or greater than 20.0 (in CEP3 and ZACK networks) are outlined with
larger symbois: circles indicate pollinator species; squares indicate plant species. The three networks have
cores with 42 (PETA), 16 (CEP3), and 20 (ZACK) species. A pollinator’s centrality is proportional to the
sum of centralities of the plants it interacts with. A central pollinator species is more central by being a
generalist—interacting with other generalist plants but also with specialized species. See table 8.1 for a
description of the networks.




greater than 20.0 that form the core. In PETA, the core is composed of 42 species
with eigenvector centralities greater than 10.0. In CEP3, flies (chiefly syrphids)
dominate the core and also Bombus spp.; the PETA network core is composed of
flies and bees in roughly the same proportions. In the plant set, in general, the
most abundant species are included in the core. The ZACK and PETA cores also
share a similar structure: the MDS ordination locates two distinct clusters within
the core of plant species (groups of squares in fig. 8.5) at each of the two sides of
the pollinator cluster in the center. Thus, ecological factors such as phenological
variation presumably contribute to the location of a particular species within
the complex network of interactions. A future research line would be to explore
the ecological correlates of differences in these locations among species and
whether there are predictable traits shared by the core species.

Network Structure: Nested Patterns

In the preceding sections, we have described patterns in connectivity distribu-
tion. This is a first step toward a description of the structure of plant-pollinator
networks. To some extent, this has revolved around the level of generalization
and specialization in these networks. As noted, the pollination webs are more
heterogeneous than random webs; that is, there are species more connected
than what would be expected to randonly occur. However, nothing has been
said about the likelihood of interaction between two species (i.e., a generalist
and specialist). For example, consider two focal species and their interactions.
Are the interactions common in both subsets? Our next step in the description
of the pattern of plant-pollinator assembly is not just to quantify the number of
connections but also to look at their identity (Dicks et al. 2002). This is related to
one of the classic questions in community ecology: whether networks of ecolog-
ical interactions (e.g., food webs) are compartmentalized (Pimm and Lawton
1980).

One concept that captures network structure, and that recently has been in-
troduced to the study of mutualisms, is nestedness. However, the concept of
nestedness is not new in ecology. It was developed in the context of island bio-
geography to describe a specific, nonrandom pattern by which a set of species is
distributed within a set of islands (Atmar and Patterson 1993). Bascompte et al.
(2003) introduced this concept to the study of mutualistic interactions by imag-
ining that plants are “islands” that a certain number of animal species “inhabit”

Nested matrices are organized as in Chinese boxes, with sets of species within
larger sets of species. This nested structure has two important features. First, it
generates highly asymmetric interactions. This can be seen by the fact that, as in-
dicated in figures 8.1A-8.1C, specialist species tend to interact with the most
generalist species (see also Minckley and Roulston, chap. 4 in this volume;
Vazquez and Aizen, chap. 9 in this volume; Petanidou and Potts, chap. 10in this
volume). Second, nestedness implies that there is a core of taxa with a high den-
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sity of interactions. In other words, generalist plants and generalist animals tend
to interact among themselves. Thus, nestedness implies asymmetry at the level
of specialists but symmetry at the level of generalists. The fact that generalist spe-
cies interact among themselves creates a very cohesive structure—understood as
a structure with redundancy, that is, multiple ways to connect the species within
this “core.” In figure 8.5, we plot the plant and animal species that constitute the
core of specific mutualistic networks. As noted, a few species contain the bulk of
interactions and cohesively build the rest of the network around themselves;
they are “central” to the network and, thus, have high centrality values.

Our quantitative measures of nestedness for natural networks are summa-
rized in table 8.1 (see Bascompte et al. 2003). Nestedness values range between 0
and 1, as measured with the nestedness calculator (Atmar and Patterson 1993).
Once a measure is provided to characterize each community, we have to put this
measure in context. How nested is a given community? Is it more nested than ex-
pected? Or is its value of nestedness similar to what we would expect for a ran-
domly assembled matrix? This is a crucial question. If the value of nestedness is
nothing more than what we would expect to occur by chance, then there is no
biological pattern to explain. Answering this question depends on having an ap-
propriate null model. Null models have been widely used in community ecology
as a way to check whether an observed level of structure can be reproduced by
simple rules (Gotelli 2000). Null models have been used in the context of plant-
pollinator networks to explore whether levels of generalization and specializa-
tion are higher than expected by chance (see Vizquez and Aizen 2003, chap. 9in
this volume). Two different null models have been used to test the significance of
the nested patterns. In null model 1 (the one provided by the nestedness calcu-
lator), all cells in the matrix have the same probability of being occupied—a
probability estimated as the number of interactions divided by the total number
of possible interactions (i.e., the connectivity). On average, each replicate will
have the same number of connections but these will be randomly distributed.
Note that this null model assumes that each species has the same probability of
having an interaction; clearly this is not the case in plant-pollinator networks.
In the preceding section, we have seen that the degree of distribution is highly
skewed. How can we incorporate this fact into a null model? In null model 2, the
probability of two particular species interacting is the average of the probability
of interaction of both the plant and the animal; that is, the probability of a link
is proportional to the degree of both plant and animal species. These two null
models are very similar to those of Vazquez and Aizen (2003). Null model 1 is the
same with the small difference that Vazquez and Aizen (2003) have the addi-
tional constraint that all species must have at least one interaction. Their null
model 2 also has a specific probability of interaction for each pair of species—an
average of the “presence” of both species. However, they use the frequency of
visits by each species (as opposed to the degree) as a measure of “abundance.”
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Because there is a strong relationship between degree and frequency of visits
(Vazquez and Aizen 2003, chap. 9 in this volume; D. Vazquez, personal commu-
nication; see also Jordano 1987), their null model 2 is essentially the same as that
of Bascompte et al. (2003). However, from a conceptual point of view, Vazquez
and Aizen (2003) define their null model at the individual level instead of at the
species level; that is, individuals are the key elements involved in mutualisms.
Generally the ideal situation would be to test significance of results with a suite
of null models with increasing levels of complexity. This exercise would tell us
what is important and what is irrelevant in producing an observed pattern.

The study by Bascompte et al. (2003) showed that the bulk of mutualistic net-
works are significantly nested; that is, they are much more structured than simi-
lar, randomly constructed networks based on either null model (fig. 8.2). Sec-
ond, there were no significant differences between the level of nestedness for
both plant-pollinator and plant-disperser networks, which, together with the
result outlined in preceding sections about the pattern of connectivity distribu-
tions, suggests invariant properties in these two types of mutualisms. That is,
there are conservative patterns of network assembly independent of the biologi-
cal detail of the interaction, network size, latitude, and other differences—these
patterns are very robust.

The implications of the nested pattern can be seen from the points of view of
both community assembly and coevolution. From the point of view of commu-
nity assembly, these patterns unambiguously show that mutualistic networks are
neither randomly assembled nor compartmentalized. This is probably the best
evidence for a pattern in networks of ecological interactions. The nonrandom
pattern of these webs may be very relevant. From the pioneering work by May
(1972) and Pimm and Lawton (1980), it was clear that the structure of food webs
highly affects their stability. May (1972) used randomly assembled food webs in
his influential study about the relationship between stability and complexity.
However, at the end of the paper, he assumed that real food webs are probably not
random and suggested that they may be organized in compartments. This struc-
ture assumes that species within the compartments are highly interactive,
whereas there are almost no interactions among different compartments.

May (1972) explored compartmentalized food webs and concluded that they
were more stable than random ones—a result challenged by Pimm and Lawton
(1980), who found the opposite result when food webs are more realistically
built. Interestingly enough, the concept of compartmentalization became en-
trenched, and subsequent papers have looked for compartmentalization in real
food webs, but with poor results. For example, both Pimm and Lawton (1980)
and Raffaelli and Hall (1992) failed to find compartmentalization, although
some limited evidence exists (e.g., Dicks et al. 2002; Corbet, chap. 14 in this vol-
ume). Nestedness can be understood as the most significant and widely observed
nonrandom pattern in networks of ecological interactions.
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The two properties of nestedness (asymmetry and the core of interactions)
may greatly affect the robustness of the mutualistic networks (see also Memmott
et al. 2004). First, because specialist (and generally rare) species interact with
generalist (and generally abundant) species, nestedness provides higher
chances for the persistence of rare species. Second, due to the cohesive role of the
core of species, with its redundancy of interactions, nestedness provides alter-
native routes for system responses after perturbations such as the elimination of
a species or alink. Another element for robustness is the generalized broad-scale
distribution of the number of interactions per species that we report, which
seems to be a general pattern in plant-animal interaction networks (Jordano
etal. 2003). Networks with broad-scale distributions of connectivities are gener-
ally thought to be more robust to loss of highly connected nodes than scale-free
networks (Amaral et al. 2000). Figure 8.6 shows a simple simulation of the effects
of species loss on the persistence of connectivity patterns in two plant-pollina-
tor networks. We simulated loss of either plants or pollinators in decreasing
order of their number of interactions (i.e., in decreasing order of their eigenvalue
centrality). For each node (species) removed, we estimated the preserved con-
nectance as a fraction of the original connectance. The results show that in-
creasing the fraction of nodes removed can dramatically affect the connectivity
of the network and its persistence. Removal of a relatively small fraction of the
most connected nodes (more than 20%) can cause a collapse of the network
(KAT1, fig. 8.6) or the loss of almost 50% of the interactions (CEP3, fig. 8.6). In
both cases, the network is more robust to loss of pollinator species and more sen-
sitive to loss of plant species. It is interesting that KAT1, a scale-free network, was
less robust to the loss of plant species, confirming expectations of models for abi-
otic networks (Barabdsi and Albert 1999; Albert et al. 2000; Barabasi et al. 2000;
Jeong et al. 2000; Albert and Barabasi 2002). CEP3, a broad-scale network, ap-
peared more robust, especially to the loss of plant species. These preliminary re-
sults suggest ways to explore the robustness of plant-pollinator networks to spe-
cies loss, to invasion by exotics, or to overall simplification due, for example, to
agricultural practices or human intervention (Kearns et al. 1998; Memmott and
Waser 2002; Memmott et al. 2004).

Concluding Remarks

Plant-pollinator networks are complex webs that share many properties with
other types of networks, both abiotic and biotic. The most characteristic prop-
erty is that interactions among species are not distributed at random, but, sur-
prisingly, the nonrandom pattern we found is largely invariant across different
ecological settings. This reveals very general patterns in the way interactions are
assembled in these communities and suggests important clues to understand
their evolution. Moreover, it demonstrates that these networks are more than
the addition of pairwise interactions: it is the whole set of pairs of speciesin both

)
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Figure 8.6 Decay in connectance as a function of removal of species in plant-pollinator networks. We
simulate the loss of an increasing fraction of either plant (+) or pollinator (0) species (abscissa) by re-
moving species, step by step, according to their decreasing ; value, starting with the most generalist spe-
cies. The ordinate represents how well the original connectivity of the network is preserved; it is estimated
as the fraction of the actual connectance (degree) that the network would have after the loss of a given
fraction of species (nodes). We use two examples of networks which illustrate the most general pattern:
CEP3—Cord6n del Cepo, in the Andes, Chile—with § = 107 species (A = 64, P = 43); and KAT1—Ashu,
Kyoto, in temperate Japan—with S = 770 species (A = 679, P = 91).

the pollinator and plant sets that becomes organized in a complex way. This or-
ganization has both topological and structural aspects relevant to understand-
ingits evolution.

First, awide range of interactions per species occurs, but these interactions are
predictably distributed according to truncated power-law or power-law models.
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That is, the probability of finding a particular species interacting with k other
species decays as k increases. Therefore, it is unlikely to find supergeneralists, but
they do exist. The presence of these highly connected nodes is less frequent than
what would be expected had plant-pollinator networks evolved similarly to
other complex abiotic networks. Whenever such a network evolves by preferen-
tially attaching new nodes to the already well-connected ones, a power-law
(scale-free) distribution of connectivities emerges. But plant-pollinator net-
works differ from these because the probabilities for the most-generalist species
lie below those expected from a scale-free network. We found few plant-pollina-
tor networks that fit the power-law distribution of k values, and this was gener-
ally for the pollinator interactions, not the plant interactions. Therefore, biases
due to sampling design (e.g., plant centered vs. pollinator centered) probably
should be taken into account in future studies.

Second, a pervasive feature of complex plant-pollinator networks is that they
are not randomly built but show a characteristic distribution of interactions
throughout the matrix: interactions pivot around a core of species generated by
the fact that interactions show a markedly nested pattern. From the point of view
of coevolution, the nested assembly has very important implications. It clearly
shows that mutualistic interactions are neither organized in specific pairwise
interactions, as the ones expected for symbiotic mutualisms, nor organized asa
“diffuse” assembly that precludes any analytic approximation. Traditionally, sci-
entists have expected to find the pattern of pairwise specialization observed in
symbiotic mutualisms wien dealing with nonsymbiotic mutualisms. The lack
of such evidence has led to the alternative view that plant-pollinator systems are
“diffuse.” Nestedness illustrates a highly structured assembly pattern that does
not correspond to either of these two extreme views. The core of interactions
may drive the coevolution of the rest of the species attached to it. It is a coevolu-
tionary “vortex” sensu Thompson (1994). Bascompte et al. (2003) have reported
a pattern in which specialists interact with generalists and generalists in turn in-
teract among themselves. The finding of a nested pattern greatly advances the
knowledge of plant-pollinator systems obtained simply by counting how many
species are specialists and how many are generalists. Thus, viewed from a net-
work perspective, the centrality of a given species relates not only to its own gen-
eralization level but also to how central are the other species with which it inter-
acts. Combined with the results on the connectivity distribution (Jordano et al.
2003), this creates a scenario in which plant-pollinator communities are highly
structured. The observed pattern delineates their “topology” and “architecture.”

The nested structure of mutualisms contributes to other recent approaches,
such as the geographic mosaic of coevolution (Thompson 1994), to bring
tractability to the complexity of coevolutionary interactions. Whereas the em-
phasis in the geographic mosaic theory is in the geographic structure, with pos-
sible specific interactions at local scales but global interactions with a larger
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number of species at a global scale, our results indicate structure within local
communities. Both views are in fact related, nestedness being eminently a geo-
graphic idea (Patterson and Atmar 1986). Further studies should elucidate how
the geographic (i.e., among communities) and the local (within communities)
nestedness patterns are related and contribute to the maintenance of biodiver-
sity.

Afuture avenue for research should explore the phenotypic and phylogenetic
correlates of variation in k among species, the phylogenetic diversity of core spe-
cies, and whether there are repeated patterns among networks. For instance, are
the species at the core of interactions, with the highest centrality, a random sub-
set of the morphospace in the community? Thus, do the species at the core define
a distinct morphological type, either in the range of corolla or pollinator mor-
phologies? In addition, a network-based approach to plant-pollinator inter-
actions could increase our predictive power for the effects of exotic species in the
networks and in the evolutionary dynamics of these communities (Memmott
and Waser 2002). These aspects are central to our understanding of the resilience
of these mutualisms to species loss. Our simple simulations showed that net-
works might collapse with the loss of even a small fraction of species, especially
if these are plants (for a somewhat contrasting view see Memmott et al. 2004).
Therefore, understanding the geographic variation of interaction matrices will
greatly contribute to clarifying potential effects of fragmentation on plant-pol-
linator communities. Techniques for rapid assessment of plant-pollinator inter-
action matrices will be rewarding for the design of conservation priorities for
preserving the whole network of interactions. Differential robustness to the loss
of plants or pollinators can ultimately be related to their positions within the
network and their role as core speci'es in these mutualisms. All these findings
point to interactions as a major component of ecosystem biodiversity—indeed,
they themselves are perhaps the architecture of biodiversity.
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